Perceiving Time to Collision Activates the Sensorimotor Cortex
نویسندگان
چکیده
The survival of many animals hinges upon their ability to avoid collisions with other animals or objects, or to precisely control the timing of collisions. Optical expansion provides a compelling impression of object approach and in principle can provide the basis for judgments of time to collision (TTC) [1]. It has been demonstrated that pigeons [2] and houseflies [3] have neural systems that can initiate rapid coordinated actions on the basis of optical expansion. In the case of humans, the linkage between judgments of TTC and coordinated action has not been established at a cortical level. Using functional magnetic resonance imaging (fMRI), we identified superior-parietal and motor-cortex areas that are selectively active during perceptual TTC judgments, some of which are normally involved in producing reach-to-grasp responses. These activations could not be attributed to actual movement of participants. We demonstrate that networks involved in the computational problem of extracting TTC from expansion information have close correspondence with the sensorimotor systems that would be involved in preparing a timed motor response, such as catching a ball or avoiding collision.
منابع مشابه
SENSORIMOTOR CONTROL OVER FUSIMOTOR NEURONS OF THE TENUISSIMUS MUSCLE IN THE A NESTHETIZED CAT: A QUALITATIVE PRIMARY AFFERENT RECORDING
Cortical control of the sensory output of muscle spindles was studied in thirteen anesthetized cats in the present experiment. Gamma motoneuron activity was monitored during electrical stimulation of the sensorimotor cortex while recording from single primary afferents from the tenuissimus muscle. Findings are as follows: 1. The state of anesthesia is crucial in obtaining reproducible resu...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملInfants’ Somatotopic Neural Responses to Seeing Human Actions: I’ve Got You under My Skin
Human infants rapidly learn new skills and customs via imitation, but the neural linkages between action perception and production are not well understood. Neuroscience studies in adults suggest that a key component of imitation-identifying the corresponding body part used in the acts of self and other-has an organized neural signature. In adults, perceiving someone using a specific body part (...
متن کاملStudy of Genes Expression Involved in Apoptosis (Bax, Survivin) After Induced Cold Injury on Sensorimotor Cortex of Mouse Brain and Treatment With Magnesium Chloride
Purpose: The purpose of this study was to investigate the expression of Bax and surviving after cold injury and the ability of magnesium chloride to inhibit of apoptosis. Materials and Methods: To produce cold injury, a metal probe cooled with liquid nitrogen was applied to the surface of the mouse intact skull above the parietal lobe by force of 100 gr for 30 sec. Brains were removed 72 h aft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005